Given :

$\angle A C B=60^{\circ}$, CE is angle bisector.
$\therefore \angle E C B=\angle E C A=30^{\circ}$
\therefore In $\triangle A D C, \angle D A C=30^{\circ}$
$\Rightarrow O C=O A$
In $\triangle O D C, \angle D O C=60^{\circ}, \angle O D C=90^{\circ}$
$\Rightarrow O D=\frac{1}{2} \quad O C \Rightarrow O D=\frac{1}{2} \quad O A \Rightarrow \frac{O A}{O D}=2$

By theorem (1), [Concurrency Theorem (available in the author's book "The Geometry of Concurrency" page no :9) \& the Rider No: 13 (available at page no : 32 of the same book available in this website)], G is the midpoint of AD. [She has reproduced the proof for both the theorem and result from the Author's book] $\angle B D A=\angle B K A=90^{\circ} \Rightarrow B D K A$ is concyclic.

As $\angle B D A=90^{\circ} \Rightarrow A B$ is the diameter and G is midpoint of AD .
then by theorem (2) [as per the result vide Rider -3 available in page no:51 of the Author's book "The Novelties of Geometry" available in this site], $B K^{2}=B D^{2}+D K^{2}+2 A K^{2}--------------$ Proved.

